招生信息
全日制
非全日制
項目類別
全日制
學制
2年 - 4年
院校特性
研究生院
是否開設提前面試
咨詢老師
是否接受調劑
咨詢老師
歷年學費
全部
歷年招生人數(shù)
全部
歷年分數(shù)線
全部
全日制
非全日制
項目類別
非全日制
學制
2年 - 4年
院校特性
研究生院
是否開設提前面試
咨詢老師
是否接受調劑
咨詢老師
歷年學費
全部
歷年招生人數(shù)
全部
歷年分數(shù)線
全部
學校簡介
貴州師范大學(Guizhou Normal University),簡稱“貴州師大”,坐落于貴州省貴陽市,學校是中華人民共和國教育部、貴州省共建的一所省屬重點大學,入選高等學校學科創(chuàng)新引智計劃、中西部高?;A能力建設工程、卓越教師培養(yǎng)計劃。
學校創(chuàng)建于1941年,原名為“國立貴陽師范學院”;1950年改名為“貴陽師范學院”;1956年,由中華人民共和國教育部正式交貴州省人民政府管理;1958年,中共貴州省委決定在貴陽師范學院內以聯(lián)合辦學的形式成立新的“貴州大學”;1959年,貴州大學從本校分出;1985年更名為“貴州師范大學”;1996年被貴州省人民政府確定為省屬重點大學;2004年,原貴州理工職業(yè)技術學院并入;2006年再次被貴州省人民政府確定為省屬重點大學。
截至2020年6月,學校有云巖區(qū)、白云區(qū)(求是學院)和花溪區(qū)三個校區(qū),占地面積近2800畝;有在校學生4.27萬人(含求是學院本科學生13000余人),在職教職工2595人;設有24個學院,有本科專業(yè)81個;有一級學科博士學位授權點6個、一級學科碩士學位授權點22個。
學校創(chuàng)建于1941年,原名為“國立貴陽師范學院”;1950年改名為“貴陽師范學院”;1956年,由中華人民共和國教育部正式交貴州省人民政府管理;1958年,中共貴州省委決定在貴陽師范學院內以聯(lián)合辦學的形式成立新的“貴州大學”;1959年,貴州大學從本校分出;1985年更名為“貴州師范大學”;1996年被貴州省人民政府確定為省屬重點大學;2004年,原貴州理工職業(yè)技術學院并入;2006年再次被貴州省人民政府確定為省屬重點大學。
截至2020年6月,學校有云巖區(qū)、白云區(qū)(求是學院)和花溪區(qū)三個校區(qū),占地面積近2800畝;有在校學生4.27萬人(含求是學院本科學生13000余人),在職教職工2595人;設有24個學院,有本科專業(yè)81個;有一級學科博士學位授權點6個、一級學科碩士學位授權點22個。
招生簡章 更多>
- 2017年貴州師范大學與銅仁學院聯(lián)合培養(yǎng)教育碩士專業(yè)學位研究生招生公告 2024-04-01
- 貴州師范大學2018年接收推薦免試攻讀碩士研究生章程 2024-04-01
- 2016年(全國統(tǒng)考)碩士研究生招生簡章 2024-04-01
- 2017年(全國統(tǒng)考)全日制、非全日制碩士研究生招生章程 2024-04-01
- 2018年貴州師范大學與貴州師范學院聯(lián)合培養(yǎng)全日制教育碩士專業(yè)學位研究生招生公告 2024-04-01
- 貴州師范大學2020年全日制、非全日制碩士研究生招生章程 2024-04-01
- 貴州師范大學2020年博士研究生招生簡章及專業(yè)目錄 2024-04-01
分數(shù)線 更多>
招生年份 | 門類 | 專業(yè)名稱 | 總分 | 英語 | 政治 | 科目一 | 科目二 | 專項計劃 |
---|---|---|---|---|---|---|---|---|
2017 | 管理學 | 會計碩士 | 184 | 37 | 74 | - | - | 無 |
2016 | 管理學 | 會計碩士 | 165 | 78 | 39 | - | - | 無 |
2015 | 管理學 | 會計碩士 | 150 | - | - | - | - | 無 |
2017 | 管理學 | 會計碩士 | 184 | 37 | 74 | - | - | 無 |
2016 | 管理學 | 會計碩士 | 165 | 78 | 39 | - | - | 無 |
2015 | 管理學 | 會計碩士 | 150 | - | - | - | - | 無 |
2017 | 管理學 | 會計碩士 | 200 | 60 | 110 | - | - | 無 |
2016 | 管理學 | 會計碩士 | 180 | 68 | 34 | - | - | 無 |
2015 | 管理學 | 會計碩士 | 155 | 35 | 70 | - | - | 無 |
2017 | 管理學 | 工商管理碩士 | 160 | 34 | 84 | - | - | 無 |
報錄比 更多>
年份 | 院系 | 專業(yè) | 專業(yè)代碼 | 招生人數(shù) | 報考人數(shù) | 錄取人數(shù) | 報錄比 |
---|---|---|---|---|---|---|---|
2019 | 嶺南學院(MBA) | 工商管理碩士 | 125100 | 335 | - | - | 0 |
2019 | 嶺南學院(MBA) | 工商管理碩士 | 125100 | 41 | - | - | 0 |
2019 | 管理學院(MBA) | 會計碩士 | 125300 | 30 | - | - | 0 |
2019 | 管理學院(MBA) | 會計碩士 | 125300 | 40 | - | - | 0 |
2019 | 管理學院(MBA) | 工商管理碩士 | 125100 | 270 | - | - | 0 |
2019 | 管理學院(MBA) | 工商管理碩士 | 125100 | 40 | - | - | 0 |
2019 | 管理學院 | 管理科學與工程 | 120100 | 72 | - | - | 0 |
2019 | 管理學院 | 工商管理 | 120200 | 60 | - | - | 0 |
2019 | 管理學院 | 項目管理 | 85239 | 2 | - | - | 0 |
2019 | 管理學院 | 物流工程 | 85240 | 10 | - | - | 0 |
學費 更多>
招生年份 | 院系 | 一級學科 | 專業(yè)名稱 | 專業(yè)代碼 | 招生類別 | 學費/單位 | 學制 |
---|---|---|---|---|---|---|---|
2019 | 政治學院 | 教育碩士 | 學科教學(思政) | 45102 | 非全日制 | 11萬元/年 | 1年 |
2019 | 管理學院 | 會計碩士 | 會計碩士 | 125300 | 非全日制 | 7.5萬元/年 | 2.5年 |
2019 | 管理學院 | 會計碩士 | 會計碩士 | 125300 | 全日制 | 6.5萬元/年 | 2年 |
2019 | 管理學院 | 工程管理碩士 | 工程管理碩士 | 125600 | 非全日制 | 10萬元/年 | 2.5年 |
2019 | 管理學院 | 工程管理碩士 | 工程管理碩士 | 125600 | 全日制 | 8萬元/年 | 2年 |
2019 | 工商管理學院 | 工程碩士 | 工業(yè)工程 | 85236 | 非全日制 | 0.8萬元/年 | 3年 |
2019 | 工商管理學院 | 工程碩士 | 工業(yè)工程 | 85236 | 全日制 | 0.6萬元/年 | 2.5年 |
2019 | 工商管理學院 | 工程碩士 | 項目管理 | 85239 | 非全日制 | 0.8萬元/年 | 3年 |
2019 | 工商管理學院 | 工程碩士 | 項目管理 | 85239 | 全日制 | 0.6萬元/年 | 2.5年 |
2019 | 工商管理學院 | 工程碩士 | 物流工程 | 85240 | 非全日制 | 0.8萬元/年 | 3年 |
考研大綱 更多>
- 2018年全國統(tǒng)考碩士研究生入學考試大綱(初試) 2024-04-01
- 2016年全國統(tǒng)考碩士研究生入學考試大綱(初試) 2024-04-01
- 2021考研大綱:貴州師范大學外國語學院碩士研究生入學考試大綱自命題英語 2024-04-01
- 2021考研大綱:貴州師范大學外國語學院碩士研究生入學考試大綱241自命題俄語 2024-04-01
- 2021考研大綱:貴州師范大學外國語學院碩士研究生入學考試大綱242自命題日語 2024-04-01
- 2021考研大綱:貴州師范大學外國語學院碩士研究生入學考試大綱243自命題法語 2024-04-01
- 2021考研大綱:貴州師范大學碩士研究生入學考試大綱(初試)511風景園林快題設計 2024-04-01
- 2021考研大綱:貴州師范大學碩士研究生入學考試大綱(初試)高等數(shù)學 2024-04-01
- 2021考研大綱:貴州師范大學碩士研究生入學考試大綱(初試)602自命題數(shù)學 2024-04-01
- 2021考研大綱:貴州師范大學全日制攻讀馬克思主義哲學碩士學位入學考試初試大綱馬克思主義哲學原理 2024-04-01
- 2021考研大綱:貴州師范大學全日制攻讀政治學碩士學位入學考試初試大綱政治學原理 2024-04-01
- 2021考研大綱:貴州師范大學全日制攻讀馬克思主義理論碩士學位入學考試初試大綱馬克思主義基本理論 2024-04-01
- 2021考研大綱:貴州師范大學全日制攻讀法學專業(yè)碩士研究生學位入學考試大綱(初試)法學綜合一 2024-04-01
- 2021考研大綱:貴州師范大學全日制攻讀碩士學位入學考試大綱715文藝理論 2024-04-01
- 2021考研大綱:貴州師范大學全日制攻讀碩士學位入學考試大綱716古代漢語 2024-04-01
復試信息 更多>
- 貴州師范大學2018年碩士研究生招生復試考生須知 2024-04-01
- 貴州師范大學2017年碩士研究生招生調劑考生須知 2024-04-01
- 貴州師范大學2018年碩士研究生招生調劑考生須知 2024-04-01
- 貴州師范大學2018年碩士研究生入學考試復試大綱 2024-04-01
- 貴州師范大學2018年碩士研究生復試時間安排 2024-04-01
- 2018年復試調劑工作聯(lián)系人一覽表 2024-04-01
- 貴州師范大學關于2021年研究生入學考試初試成績公?布及復試有關工作的通知 2024-04-01
調劑信息 更多>
- 貴州師范大學2020年碩士研究生調劑要求 2024-04-01
考試安排 更多>
暫無數(shù)據(jù)
推免政策 更多>
暫無數(shù)據(jù)
招生簡章
全新考研真題,擇校資料包獲取
立即預約
說明:您只需填寫姓名和電話即可獲取全新考研真題!也可以通過撥打熱線免費預約
我們的工作人員會在最短時間內給予您安排回復。
- 2017年貴州師范大學與銅仁學院聯(lián)合培養(yǎng)教育碩士專業(yè)學位研究生招生公告 2024-04-01
- 貴州師范大學2018年接收推薦免試攻讀碩士研究生章程 2024-04-01
- 2016年(全國統(tǒng)考)碩士研究生招生簡章 2024-04-01
- 2017年(全國統(tǒng)考)全日制、非全日制碩士研究生招生章程 2024-04-01
- 2018年貴州師范大學與貴州師范學院聯(lián)合培養(yǎng)全日制教育碩士專業(yè)學位研究生招生公告 2024-04-01
- 貴州師范大學2020年全日制、非全日制碩士研究生招生章程 2024-04-01
- 貴州師范大學2020年博士研究生招生簡章及專業(yè)目錄 2024-04-01
MBA咨詢—朱老師
歡迎咨詢MBA指導中心,添加老師免費了解最新 MBA學費、分數(shù)線、報錄比、專業(yè)目錄、報錄比、報考條件等信息,更有【MBA學習大禮包】等你來領!
添加老師
分數(shù)線
查詢
招生年份 | 門類 | 專業(yè)名稱 | 總分 | 英語 | 政治 | 科目一 | 科目二 | 專項計劃 |
---|---|---|---|---|---|---|---|---|
2017 | 管理學 | 會計碩士 | 184 | 37 | 74 | - | - | 無 |
2016 | 管理學 | 會計碩士 | 165 | 78 | 39 | - | - | 無 |
2015 | 管理學 | 會計碩士 | 150 | - | - | - | - | 無 |
2017 | 管理學 | 會計碩士 | 184 | 37 | 74 | - | - | 無 |
2016 | 管理學 | 會計碩士 | 165 | 78 | 39 | - | - | 無 |
2015 | 管理學 | 會計碩士 | 150 | - | - | - | - | 無 |
2017 | 管理學 | 會計碩士 | 200 | 60 | 110 | - | - | 無 |
2016 | 管理學 | 會計碩士 | 180 | 68 | 34 | - | - | 無 |
2015 | 管理學 | 會計碩士 | 155 | 35 | 70 | - | - | 無 |
2017 | 管理學 | 工商管理碩士 | 160 | 34 | 84 | - | - | 無 |
報錄比
查詢
年份 | 院系 | 專業(yè) | 專業(yè)代碼 | 招生人數(shù) | 報考人數(shù) | 錄取人數(shù) | 報錄比 |
---|---|---|---|---|---|---|---|
2019 | 嶺南學院(MBA) | 工商管理碩士 | 125100 | 335 | - | - | 0 |
2019 | 嶺南學院(MBA) | 工商管理碩士 | 125100 | 41 | - | - | 0 |
2019 | 管理學院(MBA) | 會計碩士 | 125300 | 30 | - | - | 0 |
2019 | 管理學院(MBA) | 會計碩士 | 125300 | 40 | - | - | 0 |
2019 | 管理學院(MBA) | 工商管理碩士 | 125100 | 270 | - | - | 0 |
2019 | 管理學院(MBA) | 工商管理碩士 | 125100 | 40 | - | - | 0 |
2019 | 管理學院 | 管理科學與工程 | 120100 | 72 | - | - | 0 |
2019 | 管理學院 | 工商管理 | 120200 | 60 | - | - | 0 |
2019 | 管理學院 | 項目管理 | 85239 | 2 | - | - | 0 |
2019 | 管理學院 | 物流工程 | 85240 | 10 | - | - | 0 |
學費
查詢
招生年份 | 院系 | 一級學科 | 專業(yè)名稱 | 專業(yè)代碼 | 招生類別 | 學費/單位 | 學制 |
---|---|---|---|---|---|---|---|
2019 | 政治學院 | 教育碩士 | 學科教學(思政) | 45102 | 非全日制 | 11萬元/年 | 1年 |
2019 | 管理學院 | 會計碩士 | 會計碩士 | 125300 | 非全日制 | 7.5萬元/年 | 2.5年 |
2019 | 管理學院 | 會計碩士 | 會計碩士 | 125300 | 全日制 | 6.5萬元/年 | 2年 |
2019 | 管理學院 | 工程管理碩士 | 工程管理碩士 | 125600 | 非全日制 | 10萬元/年 | 2.5年 |
2019 | 管理學院 | 工程管理碩士 | 工程管理碩士 | 125600 | 全日制 | 8萬元/年 | 2年 |
2019 | 工商管理學院 | 工程碩士 | 工業(yè)工程 | 85236 | 非全日制 | 0.8萬元/年 | 3年 |
2019 | 工商管理學院 | 工程碩士 | 工業(yè)工程 | 85236 | 全日制 | 0.6萬元/年 | 2.5年 |
2019 | 工商管理學院 | 工程碩士 | 項目管理 | 85239 | 非全日制 | 0.8萬元/年 | 3年 |
2019 | 工商管理學院 | 工程碩士 | 項目管理 | 85239 | 全日制 | 0.6萬元/年 | 2.5年 |
2019 | 工商管理學院 | 工程碩士 | 物流工程 | 85240 | 非全日制 | 0.8萬元/年 | 3年 |
考研大綱
全新考研真題,擇校資料包獲取
立即預約
說明:您只需填寫姓名和電話即可獲取全新考研真題!也可以通過撥打熱線免費預約
我們的工作人員會在最短時間內給予您安排回復。
2021考研大綱:貴州師范大學全國碩士研究生入學考試大綱858高等數(shù)學
來源:貴州師范大學
2024-04-01
考研大綱是全國碩士研究生入學考試命題的唯一依據(jù),也是考生復習備考必不可少的工具書,為方便大家,小編為大家整理了“2021考研大綱:貴州師范大學全國碩士研究生入學考試大綱858高等數(shù)學”的相關內容,希望對大家有所幫助!
一、考查目標
本考試大綱要求考生掌握高等數(shù)學課程的基本概念、基本理論、基本數(shù)學思想和方法,以及簡單的應用。
二、考試形式與試卷結構
(一)試卷滿分及考試時間
本試卷滿分為150分。考試時間為180分鐘。
(二)答題方式
閉卷,筆試。
(三)試卷內容結構與所占分值
微分學約占30%
積分學約占30%
微分方程約占15%
空間解析幾何約占10%
無窮級數(shù)約占15%
(四)試卷題型結構
選擇題,填空題,計算題,證明題,應用題
三、考查范圍
一.微分學
1.函數(shù)、極限與連續(xù)
1.1考試內容
函數(shù)概念及其表示法,函數(shù)的幾種特性,反函數(shù),復合函數(shù),初等函數(shù);數(shù)列極限,函數(shù)極限,極限運算法則;無窮小與無窮大量,無窮小的比較;極限存在準則及兩個重要極限;函數(shù)的連續(xù)性,函數(shù)的間斷點,初等函數(shù)的連續(xù)性,閉區(qū)間上函數(shù)連續(xù)的性質。
1.2考試要求
(1)理解函數(shù)、反函數(shù)和復合函數(shù)等相關概念,理解基本初等函數(shù)的性質及圖形,了解函數(shù)的單調性、周期性、奇偶性等。
(2)了解數(shù)列極限的的定義與函數(shù)的定義。
(3)掌握數(shù)列極限與函數(shù)極限的計算。
(4)了解函數(shù)單側極限及極限存在條件。
(5)掌握無窮小量與無窮大量以及無窮小量的比較。
(6)理解極限存在的兩個準則(夾逼準則和單調有界準則)。
(7)掌握兩個重要極限。
(8)理解函數(shù)的連續(xù)性與間斷點。
(9)掌握閉區(qū)間上連續(xù)函數(shù)的性質。
2.導數(shù)與微分
2.1考試內容
導數(shù)概念,函數(shù)求導法則及其導數(shù)基本公式,高階導數(shù),隱函數(shù)的導數(shù),由參數(shù)方程所確定的函數(shù)的導數(shù),函數(shù)微分的概念,基本初等的微分及微分運算法則;
2.2考試要求
(1)理解導數(shù)定義及其幾何意義,了解導數(shù)的一些幾何背景和物理背景。
(2)掌握導數(shù)基本公式、求導法則及其求導。
(3)了解微分定義及其意義。
(4)了解函數(shù)可導、可微與連續(xù)間的關系。
(5)掌握復合函數(shù)求導法則、參數(shù)方程和隱函數(shù)的一階導數(shù)。
(6)理解高階導數(shù)的求導法則。
3.中值定理與導數(shù)的應用
3.1考試內容
洛爾定理,拉格朗日中值定理,羅必塔法則,函數(shù)單調性的判定法,函數(shù)極值、最大值與最小值及其求法,曲線的凹凸與拐點,函數(shù)圖形的作法。
3.2考試要求
(1)理解洛爾定理、拉格朗日中值定理及其幾何意義,掌握拉格朗日中值定理以及應用。
(2)掌握洛必塔法則。
(3)掌握函數(shù)單調性的判定。
(4)理解曲線凹凸性與拐點。
(5)掌握函數(shù)的極值、最大值和最小值的求法。
4.多元函數(shù)微分
4.1考試內容
多元微分學的基本概念、理論;二元函數(shù)的極限、偏導數(shù)、全微分的概念和計算。
4.2考試要求
(1)理解二元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質。
(2)理解偏導數(shù)的概念。
(3)掌握偏導數(shù)的計算。
(4)了解全微分及其應用。
二.積分學
1.不定積分
1.1考試內容
原函數(shù)與不定積分的概念,不定積分的幾何意義,不定積分的性質,不定積分的基本積分公式,不定積分的直接積分法、第一類換元積分法與分部積分法。
1.2考試要求
(1)理解原函數(shù)和不定積分的概念。
(2)掌握不定積分的基本性質。
(3)掌握基本積分公式。
(4)掌握不定積分的第一類換元積分法與分部積分法。
(5)了解一些特殊類型函數(shù)的不定積分方法。
2.定積分
2.1考試內容
定積分的概念及其思想,定積分的性質,變上限積分函數(shù)的概念以及變上限積分函數(shù)的導數(shù),牛頓-萊布尼茲公式,定積分的第一類換元積分法與分部積分法,廣義積分的概念。
2.2考試要求
(1)了解定積分的概念與性質以及定積分的幾何意義。
(2)理解變上限積分函數(shù),掌握變上限積分函數(shù)的導數(shù)。
(3)掌握牛頓-萊布尼茲公式。
(4)掌握積分的計算以及定積分的第一類換元法和分部積分法。
(5)了解廣義積分。
3.定積分的應用
3.1考試內容
定積分的微元法,定積分的微元法求解實際應用問題。
3.2考試要求
(1)理解定積分的微元法。
(2)掌握利用定積分求平面圖形的面積。
4.重積分
4.1考試內容
重積分的概念,重積分的性質,二重積分與三重積分的計算。
4.2考試要求
(1)理解二重積分的概念與性質及其二重積分的幾何意義。
(2)掌握直角坐標系下二重積分的計算。
(3)了解三重積分的概念與性質。
三.常微分方程
1.考試內容
微分方程的一些基本概念,簡單的一階微分方程、二階常系數(shù)線性微分方程的基本求解方法,會運用微分方程的知識求解一些簡單的應用問題。
2.考試要求
(1)理解微分方程及其解、階、通解、初始條件、特解、初值問題等概念。(2)掌握可分離變量的微分方程及其解法。
(3)掌握一階線性微分方程及其基本求解方法。
(4)了解可降階的二階微分方程。
(5)了解二階線性微分方程解的結構。
(6)掌握二階常系數(shù)齊次線性微分方程及其解法。
四.空間解析幾何與向量代數(shù)
1.考試內容
空間直角坐標系,向量的概念及其運算;平面方程與直線方程的求法;兩個向量垂直、平行的條件;單位向量、方向余弦、向量的坐標表達式及用坐標表達式進行向量運算的方法;空間曲線與曲面方程的概念。
2.考試要求
(1)了解空間直角坐標系、向量的坐標,理解向量及其線性運算。
(2)掌握向量的加減法、數(shù)乘向量、數(shù)量積、向量積以及混合積等運算。
(3)掌握空間直線方程與平面方程的求法。
(4)理解空間曲線的方程的意義,空間曲線在坐標平面上的投影以及二次曲面。
(5)了解曲面與方程,旋轉曲面,柱面。
五.無窮級數(shù)
1.考試內容
無窮數(shù)項級數(shù)及其相關概念,一般數(shù)項級數(shù)斂散性的判斷,收斂級數(shù)的基本性質,幾何級數(shù)、P級數(shù)、調和級數(shù)、正項級數(shù)與交錯級數(shù)的斂散性,絕對收斂域條件收斂;函數(shù)項級數(shù)及其相關概念,冪級數(shù),函數(shù)展開成冪級數(shù),傅里葉級數(shù)的形式和系數(shù)公式,會將函數(shù)展開成傅里葉級數(shù)。
2.考試要求
(1)理解無窮數(shù)項級數(shù)收斂、發(fā)散以及和的概念,無窮數(shù)項級數(shù)收斂的必要條件,掌握無窮級數(shù)的基本性質及其收斂性的判斷。
(1)掌握幾何級數(shù)和P級數(shù)的收斂性的判斷。
(2)掌握正項級數(shù)的比較審斂法與比值審斂法。
(3)掌握交錯級數(shù)的萊布尼茲判別法。
(4)了解無窮數(shù)項級數(shù)絕對收斂與條件收斂的關系。
(5)了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念。
(6)掌握較簡單的冪級數(shù)的收斂半徑、收斂區(qū)間及其收斂域的求法。
(7)掌握和的麥克勞林展開式。
主要參考書
同濟大學數(shù)學主編.高等數(shù)學(第七版).高等教育教出版社,2014.6
原文標題:2021年全國統(tǒng)考全日制、非全日制碩士研究生入學考試大綱(初試)
原文鏈接:https://yjsc.gznu.edu.cn/info/1077/7141.htm
以上就是“2021考研大綱:貴州師范大學全國碩士研究生入學考試大綱858高等數(shù)學”的相關內容,更多考研信息,請持續(xù)關注。
一、考查目標
本考試大綱要求考生掌握高等數(shù)學課程的基本概念、基本理論、基本數(shù)學思想和方法,以及簡單的應用。
二、考試形式與試卷結構
(一)試卷滿分及考試時間
本試卷滿分為150分。考試時間為180分鐘。
(二)答題方式
閉卷,筆試。
(三)試卷內容結構與所占分值
微分學約占30%
積分學約占30%
微分方程約占15%
空間解析幾何約占10%
無窮級數(shù)約占15%
(四)試卷題型結構
選擇題,填空題,計算題,證明題,應用題
三、考查范圍
一.微分學
1.函數(shù)、極限與連續(xù)
1.1考試內容
函數(shù)概念及其表示法,函數(shù)的幾種特性,反函數(shù),復合函數(shù),初等函數(shù);數(shù)列極限,函數(shù)極限,極限運算法則;無窮小與無窮大量,無窮小的比較;極限存在準則及兩個重要極限;函數(shù)的連續(xù)性,函數(shù)的間斷點,初等函數(shù)的連續(xù)性,閉區(qū)間上函數(shù)連續(xù)的性質。
1.2考試要求
(1)理解函數(shù)、反函數(shù)和復合函數(shù)等相關概念,理解基本初等函數(shù)的性質及圖形,了解函數(shù)的單調性、周期性、奇偶性等。
(2)了解數(shù)列極限的的定義與函數(shù)的定義。
(3)掌握數(shù)列極限與函數(shù)極限的計算。
(4)了解函數(shù)單側極限及極限存在條件。
(5)掌握無窮小量與無窮大量以及無窮小量的比較。
(6)理解極限存在的兩個準則(夾逼準則和單調有界準則)。
(7)掌握兩個重要極限。
(8)理解函數(shù)的連續(xù)性與間斷點。
(9)掌握閉區(qū)間上連續(xù)函數(shù)的性質。
2.導數(shù)與微分
2.1考試內容
導數(shù)概念,函數(shù)求導法則及其導數(shù)基本公式,高階導數(shù),隱函數(shù)的導數(shù),由參數(shù)方程所確定的函數(shù)的導數(shù),函數(shù)微分的概念,基本初等的微分及微分運算法則;
2.2考試要求
(1)理解導數(shù)定義及其幾何意義,了解導數(shù)的一些幾何背景和物理背景。
(2)掌握導數(shù)基本公式、求導法則及其求導。
(3)了解微分定義及其意義。
(4)了解函數(shù)可導、可微與連續(xù)間的關系。
(5)掌握復合函數(shù)求導法則、參數(shù)方程和隱函數(shù)的一階導數(shù)。
(6)理解高階導數(shù)的求導法則。
3.中值定理與導數(shù)的應用
3.1考試內容
洛爾定理,拉格朗日中值定理,羅必塔法則,函數(shù)單調性的判定法,函數(shù)極值、最大值與最小值及其求法,曲線的凹凸與拐點,函數(shù)圖形的作法。
3.2考試要求
(1)理解洛爾定理、拉格朗日中值定理及其幾何意義,掌握拉格朗日中值定理以及應用。
(2)掌握洛必塔法則。
(3)掌握函數(shù)單調性的判定。
(4)理解曲線凹凸性與拐點。
(5)掌握函數(shù)的極值、最大值和最小值的求法。
4.多元函數(shù)微分
4.1考試內容
多元微分學的基本概念、理論;二元函數(shù)的極限、偏導數(shù)、全微分的概念和計算。
4.2考試要求
(1)理解二元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質。
(2)理解偏導數(shù)的概念。
(3)掌握偏導數(shù)的計算。
(4)了解全微分及其應用。
二.積分學
1.不定積分
1.1考試內容
原函數(shù)與不定積分的概念,不定積分的幾何意義,不定積分的性質,不定積分的基本積分公式,不定積分的直接積分法、第一類換元積分法與分部積分法。
1.2考試要求
(1)理解原函數(shù)和不定積分的概念。
(2)掌握不定積分的基本性質。
(3)掌握基本積分公式。
(4)掌握不定積分的第一類換元積分法與分部積分法。
(5)了解一些特殊類型函數(shù)的不定積分方法。
2.定積分
2.1考試內容
定積分的概念及其思想,定積分的性質,變上限積分函數(shù)的概念以及變上限積分函數(shù)的導數(shù),牛頓-萊布尼茲公式,定積分的第一類換元積分法與分部積分法,廣義積分的概念。
2.2考試要求
(1)了解定積分的概念與性質以及定積分的幾何意義。
(2)理解變上限積分函數(shù),掌握變上限積分函數(shù)的導數(shù)。
(3)掌握牛頓-萊布尼茲公式。
(4)掌握積分的計算以及定積分的第一類換元法和分部積分法。
(5)了解廣義積分。
3.定積分的應用
3.1考試內容
定積分的微元法,定積分的微元法求解實際應用問題。
3.2考試要求
(1)理解定積分的微元法。
(2)掌握利用定積分求平面圖形的面積。
4.重積分
4.1考試內容
重積分的概念,重積分的性質,二重積分與三重積分的計算。
4.2考試要求
(1)理解二重積分的概念與性質及其二重積分的幾何意義。
(2)掌握直角坐標系下二重積分的計算。
(3)了解三重積分的概念與性質。
三.常微分方程
1.考試內容
微分方程的一些基本概念,簡單的一階微分方程、二階常系數(shù)線性微分方程的基本求解方法,會運用微分方程的知識求解一些簡單的應用問題。
2.考試要求
(1)理解微分方程及其解、階、通解、初始條件、特解、初值問題等概念。(2)掌握可分離變量的微分方程及其解法。
(3)掌握一階線性微分方程及其基本求解方法。
(4)了解可降階的二階微分方程。
(5)了解二階線性微分方程解的結構。
(6)掌握二階常系數(shù)齊次線性微分方程及其解法。
四.空間解析幾何與向量代數(shù)
1.考試內容
空間直角坐標系,向量的概念及其運算;平面方程與直線方程的求法;兩個向量垂直、平行的條件;單位向量、方向余弦、向量的坐標表達式及用坐標表達式進行向量運算的方法;空間曲線與曲面方程的概念。
2.考試要求
(1)了解空間直角坐標系、向量的坐標,理解向量及其線性運算。
(2)掌握向量的加減法、數(shù)乘向量、數(shù)量積、向量積以及混合積等運算。
(3)掌握空間直線方程與平面方程的求法。
(4)理解空間曲線的方程的意義,空間曲線在坐標平面上的投影以及二次曲面。
(5)了解曲面與方程,旋轉曲面,柱面。
五.無窮級數(shù)
1.考試內容
無窮數(shù)項級數(shù)及其相關概念,一般數(shù)項級數(shù)斂散性的判斷,收斂級數(shù)的基本性質,幾何級數(shù)、P級數(shù)、調和級數(shù)、正項級數(shù)與交錯級數(shù)的斂散性,絕對收斂域條件收斂;函數(shù)項級數(shù)及其相關概念,冪級數(shù),函數(shù)展開成冪級數(shù),傅里葉級數(shù)的形式和系數(shù)公式,會將函數(shù)展開成傅里葉級數(shù)。
2.考試要求
(1)理解無窮數(shù)項級數(shù)收斂、發(fā)散以及和的概念,無窮數(shù)項級數(shù)收斂的必要條件,掌握無窮級數(shù)的基本性質及其收斂性的判斷。
(1)掌握幾何級數(shù)和P級數(shù)的收斂性的判斷。
(2)掌握正項級數(shù)的比較審斂法與比值審斂法。
(3)掌握交錯級數(shù)的萊布尼茲判別法。
(4)了解無窮數(shù)項級數(shù)絕對收斂與條件收斂的關系。
(5)了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念。
(6)掌握較簡單的冪級數(shù)的收斂半徑、收斂區(qū)間及其收斂域的求法。
(7)掌握和的麥克勞林展開式。
主要參考書
同濟大學數(shù)學主編.高等數(shù)學(第七版).高等教育教出版社,2014.6
原文標題:2021年全國統(tǒng)考全日制、非全日制碩士研究生入學考試大綱(初試)
原文鏈接:https://yjsc.gznu.edu.cn/info/1077/7141.htm
以上就是“2021考研大綱:貴州師范大學全國碩士研究生入學考試大綱858高等數(shù)學”的相關內容,更多考研信息,請持續(xù)關注。
復試信息
全新考研真題,擇校資料包獲取
立即預約
說明:您只需填寫姓名和電話即可獲取全新考研真題!也可以通過撥打熱線免費預約
我們的工作人員會在最短時間內給予您安排回復。
- 貴州師范大學2018年碩士研究生招生復試考生須知 2024-04-01
- 貴州師范大學2017年碩士研究生招生調劑考生須知 2024-04-01
- 貴州師范大學2018年碩士研究生招生調劑考生須知 2024-04-01
- 貴州師范大學2018年碩士研究生入學考試復試大綱 2024-04-01
- 貴州師范大學2018年碩士研究生復試時間安排 2024-04-01
- 2018年復試調劑工作聯(lián)系人一覽表 2024-04-01
- 貴州師范大學關于2021年研究生入學考試初試成績公?布及復試有關工作的通知 2024-04-01
調劑信息
全新考研真題,擇校資料包獲取
立即預約
說明:您只需填寫姓名和電話即可獲取全新考研真題!也可以通過撥打熱線免費預約
我們的工作人員會在最短時間內給予您安排回復。
- 貴州師范大學2020年碩士研究生調劑要求 2024-04-01
考試安排
全新考研真題,擇校資料包獲取
立即預約
說明:您只需填寫姓名和電話即可獲取全新考研真題!也可以通過撥打熱線免費預約
我們的工作人員會在最短時間內給予您安排回復。
暫無數(shù)據(jù)
推免政策
全新考研真題,擇校資料包獲取
立即預約
說明:您只需填寫姓名和電話即可獲取全新考研真題!也可以通過撥打熱線免費預約
我們的工作人員會在最短時間內給予您安排回復。
暫無數(shù)據(jù)
立即下載
MBA擇校評估
MBA報考測評:2022MBA報考測評申請中,填寫相關信息聯(lián)系老師進行1v1擇校咨詢
學習資料
學費排行榜
MBA資訊