CQF的高級(jí)選修課有哪些?附課程介紹

  CQF的高級(jí)選修課有:算法交易、高級(jí)計(jì)算方法、高級(jí)風(fēng)險(xiǎn)管理、高級(jí)波動(dòng)率模型、基于Python的機(jī)器學(xué)習(xí)、高級(jí)投資組合管理、交易對(duì)手風(fēng)險(xiǎn)模型、量化中的行為經(jīng)濟(jì)學(xué)、基于R語(yǔ)言的量化金融分析、風(fēng)險(xiǎn)預(yù)算、金融科技、C++編程。

CQF高級(jí)選修課

  CQF整個(gè)項(xiàng)目的主要包含核心課程和高級(jí)選修課程,核心課程是Model 1-Model 6,在Model 6模塊學(xué)習(xí)完后,還有上述的12門高級(jí)選修課,每位學(xué)員可以選擇2門自己感興趣的課程內(nèi)容進(jìn)行學(xué)習(xí),高級(jí)選修課的內(nèi)容和CQF的Final Project考試課題是相關(guān)的,因?yàn)镕inal Project的多個(gè)考試課題中,大部分是來自高級(jí)選修的課題,如果你想在Final Project考試中做一個(gè)你擅長(zhǎng)的課題,那么在高級(jí)選修課中就選擇相關(guān)課題進(jìn)行學(xué)習(xí),就一舉兩得了。

CQF高級(jí)選修課的課程介紹

  CQF的高級(jí)選修課的課程介紹如下:

  1、算法交易(Algorithmic Trading)

  The use of algorithms has become an important element of modern-day financial markets,used by both the buy side and sell side.This elective will look into the techniques used by quantitative professionals who work within the area.

  算法的使用已經(jīng)成為現(xiàn)代金融市場(chǎng)的一個(gè)重要元素,買方和賣方都在使用。這門選修課將研究在該領(lǐng)域工作的定量專家使用的技術(shù)。

  What is Algorithmic Trading

  Preparing data;Back testing,analysing results and optimisation

  Build your own algorithm

  Alternative approaches:Paris trading Options;New Analytics

  A career in Algorithmic trading

  2、高級(jí)計(jì)算方法(Advanced Computational Methods)

  One key skill for anyone who works within quantitative finance is how to use technology to solve complex mathematical problems.This elective will look into advanced computational techniques for solving and implementing math in an efficient and succinct manner,ensuring that the right techniques are used for the right problems.

  對(duì)于任何從事量化金融工作的人來說,一個(gè)關(guān)鍵技能是如何使用技術(shù)解決復(fù)雜的數(shù)學(xué)問題。這門選修課將研究先進(jìn)的計(jì)算技術(shù),以高效和簡(jiǎn)潔的方式解決和實(shí)施數(shù)學(xué),確保正確的技術(shù)用于正確的問題。

  Finite Difference Methods(algebraic approach)and application to BVP

  Root finding

  Interpolation

  Numerical Integration

  3、高級(jí)風(fēng)險(xiǎn)管理(Advanced Risk Management)

  In this elective,we will explore some of the recent developments in Quantitative Risk Management.We take as a point of departure the paradigms on how market risk is conceived and measured,both in the banking industry(Expected Shortfall)and under the new Basel regulatory frameworks(Fundamentals Review of the Trading Book,New Minimum,Capital of Market Risk).

  在這門選修課中,我們將探討量化風(fēng)險(xiǎn)管理的一些最新發(fā)展。我們以如何在銀行業(yè)(預(yù)期虧空)和新的巴塞爾監(jiān)管框架(交易賬簿基本回顧,新的最小值,市場(chǎng)風(fēng)險(xiǎn)資本)下構(gòu)思和衡量市場(chǎng)風(fēng)險(xiǎn)的范例為出發(fā)點(diǎn)。

  Review of new developments on market risk management and measurement

  Explore the use of extreme value of theory(EVT)

  Explore adjoint automatic differentiation

  4、高級(jí)波動(dòng)率模型(Advanced Volatility Modeling)

  Volatility and being able to model volatility is a key element to any quant model.This elective will look into the common techniques used to model volatility throughout the industry.It will provide the mathematics and numerical methods for solving problems in stochastic volatility.

  波動(dòng)率和能夠?qū)Σ▌?dòng)率進(jìn)行建模是任何量化模型的關(guān)鍵要素。本選修課將研究用于模擬整個(gè)行業(yè)的波動(dòng)率的常用技術(shù)。它將提供解決隨機(jī)波動(dòng)率問題的數(shù)學(xué)和數(shù)值方法。

  Fourier Transforms

  Functions of a Complex Variable

  Stochastic Volatility

  Jump Diffusion

  5、基于Python的機(jī)器學(xué)習(xí)(Machine Learning with Python)

  This elective will focus on Machine Learning and deep learning with Python applied to Finance.We will focus on techniques to retrieve financial data from open data sources.

  這門選修課將側(cè)重于使用Python在機(jī)器學(xué)習(xí)和深度學(xué)習(xí)在金融中的應(yīng)用。我們將重點(diǎn)介紹從開源數(shù)據(jù)中檢索財(cái)務(wù)數(shù)據(jù)的技術(shù)。

  Using linear OLS regression to predict financial prices&returns

  Using scikit-learn for machine learning with Python

  Application to the pricing of the American options by Monte Carlo simulation

  Applying logistic regression to classification problems

  Predicting stock market returns as a classification problem

  Using TensorFlow for deep learning with Python

  Using deep learning for predicting stock market returns

  6、高級(jí)投資組合管理(Advanced Portfolio Management)

  As quantitative finance becomes more important in today’s financial markets,many buyside firms are using quantitative techniques to improve their returns and better manage client capital.This elective will look into the latest techniques used by the buy side in order to achieve these goals.

  隨著量化金融在當(dāng)今的金融市場(chǎng)中變得越來越重要,許多買方公司正在使用量化技術(shù)來提高回報(bào)并更好地管理客戶資本。該選修課將研究買方為實(shí)現(xiàn)這些目標(biāo)而使用的最新技術(shù)。

  Perform a dynamic portfolio optimization,using stochastic control

  Combine views with market data using filtering to determine the necessary parameters

  Understand the importance of behavioural biases and be able to address them

  Understand the implementation issues

  Develop new insights into portfolio risk management

  7、交易對(duì)手風(fēng)險(xiǎn)模型(Counterparty Credit Risk Modeling)

  Post-global financial crisis,counterparty credit risk and other related risks have become much more pronounced and need to be taken into account during the pricing and modeling stages.This elective will go through all the risks associated with the counterparty and how they are included in any modeling frameworks.

  后全球金融危機(jī)、交易對(duì)手信用風(fēng)險(xiǎn)和其他相關(guān)風(fēng)險(xiǎn)變得更加明顯,需要在定價(jià)和建模階段加以考慮。該選修課將介紹與交易對(duì)手相關(guān)的所有風(fēng)險(xiǎn),以及它們?nèi)绾伟谌魏谓?蚣苤小?/p>

  Credit Risk to Credit Derivatives

  Counterparty Credit Risk:CVA,DVA,FVA

  Interest Rates for Counterparty Risk–dynamic models and modeling

  Interest Rate Swap CVA and implementation of dynamic model

  8、量化中的行為經(jīng)濟(jì)學(xué)(Behavioural Finance for Quants)

  Behavioural finance and how human psychology affects our perception of the world,impacts our quantitative models and drives our financial decisions.This elective will equip delegates with tools to identify the key psychological pitfalls,use their mathematical skills to address these pitfalls and build better financial models.

  行為金融學(xué)以及人類心理學(xué)如何影響我們對(duì)世界的感知,影響我們的定量模型并推動(dòng)我們的財(cái)務(wù)決策。該選修課將為學(xué)員提供工具,以識(shí)別關(guān)鍵的心理陷阱,利用他們的數(shù)學(xué)技能來解決這些陷阱并建立更好的財(cái)務(wù)模型。

  S ystem 1 Vs System 2

  Behavioural Biases;Heuristic processes;Framing effects and Group processes

  Loss aversion Vs Risk aversion;Loss aversion;SP/A theory

  Linearity and Nonlinearity

  Game theory

  9、基于R語(yǔ)言的量化金融分析(R for Quant Finance)

  R is a powerful statistical programming language,with numerous tricks up its sleeves making it an ideal environment to code quant finance and data analytics applications.

  R是一種強(qiáng)大的統(tǒng)計(jì)編程語(yǔ)言,擁有眾多技巧,使其成為編寫量化金融和數(shù)據(jù)分析應(yīng)用程序的理想環(huán)境。

  Intro to R and R Studio

  Navigate and understand packages

  Understand data structures and data types

  Plot charts,read and write data files

  Write your own scripts and code

  10、風(fēng)險(xiǎn)預(yù)算(Risk Budgeting)

  Rather than solving the risk-return optimization problem as in the classic(Markowitz)approach,risk budgeting focuses on risk and its limits(budgets).This elective will focus on the quant aspects of risk budgeting and how it can be applied to portfolio management.

  風(fēng)險(xiǎn)預(yù)算不是像經(jīng)典(Markowitz)方法那樣解決風(fēng)險(xiǎn)回報(bào)優(yōu)化問題,而是專注于風(fēng)險(xiǎn)及其極限(預(yù)算)。本選修課將側(cè)重于風(fēng)險(xiǎn)預(yù)算的量化方面以及如何將其應(yīng)用于投資組合管理。

  Portfolio Construction and Measurement

  Value at Risk in Portfolio Management

  Risk Budgeting in Theory

  Risk Budgeting in Practice

  11、金融科技(Fintech)

  Financial technology,also known as fintech,is an economic industry composed of companies that use technology to make financial services more efficient.This elective gives an insight into the financial technology revolution and the disruption,innovation and opportunity therein.

  金融技術(shù),也稱為金融科技,是一個(gè)利用技術(shù)使金融服務(wù)更有效率的公司組成的經(jīng)濟(jì)產(chǎn)業(yè)。這門選修課讓你深入了解金融科技革命帶來的變革,創(chuàng)新和機(jī)遇。

  Intro to and History of Fintech

  Fintech–Breaking the Financial Services Value Chain

  FinTech Hubs

  Technology–Blockchain;Cryptocurrencies;Big Data 102;AI 102

  Fintech Solutions

  The Future of Fintech

  12、C++編程(C++)

  Starting with the basics of simple input via keyboard and output to screen,this elective will work through a number of topics,finishing with simple OOP.

  從簡(jiǎn)單的鍵盤輸入和屏幕輸出開始學(xué)習(xí)C++的基礎(chǔ)知識(shí),該選修課將會(huì)涉及許多主題,最后將會(huì)以C++面向?qū)ο缶幊痰暮?jiǎn)單示例結(jié)束。

  Getting Started with the C++Environment–First Program;Data Types;Simple Debugging

  Control Flow and Formatting–Decision Making;File Management;Formatting Output

  Functions–Writing User Defined Functions;Headers and Source Files

  Intro to OOP–Simple Classes and Objects

  Arrays and Strings

學(xué)習(xí)資料/免費(fèi)課程/新人優(yōu)惠券>>
文章版權(quán)會(huì)計(jì)網(wǎng)kuaiji.com所有,未經(jīng)許可不得轉(zhuǎn)載。
最新文章
2025年cqf量化金融分析師含金量如何?點(diǎn)擊了解!cqf是量化金融領(lǐng)域內(nèi)的證書,很多人都不知道該證書的含金量到底高不高,下面我們就一起來看一下!
2024-11-12
2025年cqf量化金融分析師考試難嗎?迅速查看!cqf是國(guó)際量化金融分析師的簡(jiǎn)稱,光從近些年報(bào)考的人數(shù)來看,就可以知道該證書的火熱程度。即便如此,仍有很多人對(duì)其存在疑惑,比如其考試難度如何,下面我們一起來看一下!
2024-11-12
cqf量化金融分析師考試難度分析,考生必看!眾所周知,cqf量化金融分析師的考試難度還是很高的,因?yàn)樗紫仁且粋€(gè)國(guó)際性的考試,其次采用全英文課程學(xué)習(xí)和考試,所以對(duì)中國(guó)籍考生來說,難度還是很大的。
2024-11-11
最新更新
編輯推薦
全站精華
133 1191 2314
立即咨詢
今 日 網(wǎng) 站 訪 問 用 戶 數(shù)
資料中心
今日領(lǐng)取時(shí)間僅剩
2 3
:
5 3
:
1 0
時(shí)
領(lǐng)取CFA試聽課程
自動(dòng)輸入歷史信息
立即預(yù)約
最新參與客戶
題庫(kù)火熱使用中
1180人在線刷題中
精選問答
cqf正常需要考幾年
展開
cqf正常需要半年-三年的時(shí)間,但具體時(shí)間根據(jù)個(gè)人情況而定??荚囉闪鶄€(gè)模塊,兩個(gè)選定的高級(jí)選修課,三個(gè)考試和一個(gè)最終項(xiàng)目組成??荚嚭细穹?jǐn)?shù)為60分,三年內(nèi)完成考試,即可取得證書。
cqf難度怎么樣
展開
cqf證書難度大。原因:1、高難度的考試內(nèi)容,需要考生具備廣泛的知識(shí)儲(chǔ)備和高超的技能水平;2、要求考生具備非常高的技術(shù)能力和分析能力;3、cqf證書的學(xué)習(xí)時(shí)間非常緊迫,要在短時(shí)間內(nèi)學(xué)習(xí)大量的考試內(nèi)容。
cqf通過率高嗎
展開
CQF考試的通過率不是很高,官方暫未公布準(zhǔn)確的通過率,但是CQF考試是根據(jù)考生提交的論文質(zhì)量決定是否通過的,這也從側(cè)面反映出CQF考試的難度較大。CQF滿分100分,達(dá)到60或者以上的成績(jī)則視為合格。
獲得了1v1專業(yè)解答
立即咨詢
會(huì)計(jì)網(wǎng)App
大?。?47.93MB
立即下載
已獲得11324345名會(huì)計(jì)學(xué)員認(rèn)可