CQF的高級(jí)選修課有:算法交易、高級(jí)計(jì)算方法、高級(jí)風(fēng)險(xiǎn)管理、高級(jí)波動(dòng)率模型、基于Python的機(jī)器學(xué)習(xí)、高級(jí)投資組合管理、交易對(duì)手風(fēng)險(xiǎn)模型、量化中的行為經(jīng)濟(jì)學(xué)、基于R語(yǔ)言的量化金融分析、風(fēng)險(xiǎn)預(yù)算、金融科技、C++編程。
CQF整個(gè)項(xiàng)目的主要包含核心課程和高級(jí)選修課程,核心課程是Model 1-Model 6,在Model 6模塊學(xué)習(xí)完后,還有上述的12門(mén)高級(jí)選修課,每位學(xué)員可以選擇2門(mén)自己感興趣的課程內(nèi)容進(jìn)行學(xué)習(xí),高級(jí)選修課的內(nèi)容和CQF的Final Project考試課題是相關(guān)的,因?yàn)镕inal Project的多個(gè)考試課題中,大部分是來(lái)自高級(jí)選修的課題,如果你想在Final Project考試中做一個(gè)你擅長(zhǎng)的課題,那么在高級(jí)選修課中就選擇相關(guān)課題進(jìn)行學(xué)習(xí),就一舉兩得了。
CQF的高級(jí)選修課的課程介紹如下:
1、算法交易(Algorithmic Trading)
The use of algorithms has become an important element of modern-day financial markets,used by both the buy side and sell side.This elective will look into the techniques used by quantitative professionals who work within the area.
算法的使用已經(jīng)成為現(xiàn)代金融市場(chǎng)的一個(gè)重要元素,買(mǎi)方和賣(mài)方都在使用。這門(mén)選修課將研究在該領(lǐng)域工作的定量專(zhuān)家使用的技術(shù)。
What is Algorithmic Trading
Preparing data;Back testing,analysing results and optimisation
Build your own algorithm
Alternative approaches:Paris trading Options;New Analytics
A career in Algorithmic trading
2、高級(jí)計(jì)算方法(Advanced Computational Methods)
One key skill for anyone who works within quantitative finance is how to use technology to solve complex mathematical problems.This elective will look into advanced computational techniques for solving and implementing math in an efficient and succinct manner,ensuring that the right techniques are used for the right problems.
對(duì)于任何從事量化金融工作的人來(lái)說(shuō),一個(gè)關(guān)鍵技能是如何使用技術(shù)解決復(fù)雜的數(shù)學(xué)問(wèn)題。這門(mén)選修課將研究先進(jìn)的計(jì)算技術(shù),以高效和簡(jiǎn)潔的方式解決和實(shí)施數(shù)學(xué),確保正確的技術(shù)用于正確的問(wèn)題。
Finite Difference Methods(algebraic approach)and application to BVP
Root finding
Interpolation
Numerical Integration
3、高級(jí)風(fēng)險(xiǎn)管理(Advanced Risk Management)
In this elective,we will explore some of the recent developments in Quantitative Risk Management.We take as a point of departure the paradigms on how market risk is conceived and measured,both in the banking industry(Expected Shortfall)and under the new Basel regulatory frameworks(Fundamentals Review of the Trading Book,New Minimum,Capital of Market Risk).
在這門(mén)選修課中,我們將探討量化風(fēng)險(xiǎn)管理的一些最新發(fā)展。我們以如何在銀行業(yè)(預(yù)期虧空)和新的巴塞爾監(jiān)管框架(交易賬簿基本回顧,新的最小值,市場(chǎng)風(fēng)險(xiǎn)資本)下構(gòu)思和衡量市場(chǎng)風(fēng)險(xiǎn)的范例為出發(fā)點(diǎn)。
Review of new developments on market risk management and measurement
Explore the use of extreme value of theory(EVT)
Explore adjoint automatic differentiation
4、高級(jí)波動(dòng)率模型(Advanced Volatility Modeling)
Volatility and being able to model volatility is a key element to any quant model.This elective will look into the common techniques used to model volatility throughout the industry.It will provide the mathematics and numerical methods for solving problems in stochastic volatility.
波動(dòng)率和能夠?qū)Σ▌?dòng)率進(jìn)行建模是任何量化模型的關(guān)鍵要素。本選修課將研究用于模擬整個(gè)行業(yè)的波動(dòng)率的常用技術(shù)。它將提供解決隨機(jī)波動(dòng)率問(wèn)題的數(shù)學(xué)和數(shù)值方法。
Fourier Transforms
Functions of a Complex Variable
Stochastic Volatility
Jump Diffusion
5、基于Python的機(jī)器學(xué)習(xí)(Machine Learning with Python)
This elective will focus on Machine Learning and deep learning with Python applied to Finance.We will focus on techniques to retrieve financial data from open data sources.
這門(mén)選修課將側(cè)重于使用Python在機(jī)器學(xué)習(xí)和深度學(xué)習(xí)在金融中的應(yīng)用。我們將重點(diǎn)介紹從開(kāi)源數(shù)據(jù)中檢索財(cái)務(wù)數(shù)據(jù)的技術(shù)。
Using linear OLS regression to predict financial prices&returns
Using scikit-learn for machine learning with Python
Application to the pricing of the American options by Monte Carlo simulation
Applying logistic regression to classification problems
Predicting stock market returns as a classification problem
Using TensorFlow for deep learning with Python
Using deep learning for predicting stock market returns
6、高級(jí)投資組合管理(Advanced Portfolio Management)
As quantitative finance becomes more important in today’s financial markets,many buyside firms are using quantitative techniques to improve their returns and better manage client capital.This elective will look into the latest techniques used by the buy side in order to achieve these goals.
隨著量化金融在當(dāng)今的金融市場(chǎng)中變得越來(lái)越重要,許多買(mǎi)方公司正在使用量化技術(shù)來(lái)提高回報(bào)并更好地管理客戶(hù)資本。該選修課將研究買(mǎi)方為實(shí)現(xiàn)這些目標(biāo)而使用的最新技術(shù)。
Perform a dynamic portfolio optimization,using stochastic control
Combine views with market data using filtering to determine the necessary parameters
Understand the importance of behavioural biases and be able to address them
Understand the implementation issues
Develop new insights into portfolio risk management
7、交易對(duì)手風(fēng)險(xiǎn)模型(Counterparty Credit Risk Modeling)
Post-global financial crisis,counterparty credit risk and other related risks have become much more pronounced and need to be taken into account during the pricing and modeling stages.This elective will go through all the risks associated with the counterparty and how they are included in any modeling frameworks.
后全球金融危機(jī)、交易對(duì)手信用風(fēng)險(xiǎn)和其他相關(guān)風(fēng)險(xiǎn)變得更加明顯,需要在定價(jià)和建模階段加以考慮。該選修課將介紹與交易對(duì)手相關(guān)的所有風(fēng)險(xiǎn),以及它們?nèi)绾伟谌魏谓?蚣苤小?/p>
Credit Risk to Credit Derivatives
Counterparty Credit Risk:CVA,DVA,FVA
Interest Rates for Counterparty Risk–dynamic models and modeling
Interest Rate Swap CVA and implementation of dynamic model
8、量化中的行為經(jīng)濟(jì)學(xué)(Behavioural Finance for Quants)
Behavioural finance and how human psychology affects our perception of the world,impacts our quantitative models and drives our financial decisions.This elective will equip delegates with tools to identify the key psychological pitfalls,use their mathematical skills to address these pitfalls and build better financial models.
行為金融學(xué)以及人類(lèi)心理學(xué)如何影響我們對(duì)世界的感知,影響我們的定量模型并推動(dòng)我們的財(cái)務(wù)決策。該選修課將為學(xué)員提供工具,以識(shí)別關(guān)鍵的心理陷阱,利用他們的數(shù)學(xué)技能來(lái)解決這些陷阱并建立更好的財(cái)務(wù)模型。
S ystem 1 Vs System 2
Behavioural Biases;Heuristic processes;Framing effects and Group processes
Loss aversion Vs Risk aversion;Loss aversion;SP/A theory
Linearity and Nonlinearity
Game theory
9、基于R語(yǔ)言的量化金融分析(R for Quant Finance)
R is a powerful statistical programming language,with numerous tricks up its sleeves making it an ideal environment to code quant finance and data analytics applications.
R是一種強(qiáng)大的統(tǒng)計(jì)編程語(yǔ)言,擁有眾多技巧,使其成為編寫(xiě)量化金融和數(shù)據(jù)分析應(yīng)用程序的理想環(huán)境。
Intro to R and R Studio
Navigate and understand packages
Understand data structures and data types
Plot charts,read and write data files
Write your own scripts and code
10、風(fēng)險(xiǎn)預(yù)算(Risk Budgeting)
Rather than solving the risk-return optimization problem as in the classic(Markowitz)approach,risk budgeting focuses on risk and its limits(budgets).This elective will focus on the quant aspects of risk budgeting and how it can be applied to portfolio management.
風(fēng)險(xiǎn)預(yù)算不是像經(jīng)典(Markowitz)方法那樣解決風(fēng)險(xiǎn)回報(bào)優(yōu)化問(wèn)題,而是專(zhuān)注于風(fēng)險(xiǎn)及其極限(預(yù)算)。本選修課將側(cè)重于風(fēng)險(xiǎn)預(yù)算的量化方面以及如何將其應(yīng)用于投資組合管理。
Portfolio Construction and Measurement
Value at Risk in Portfolio Management
Risk Budgeting in Theory
Risk Budgeting in Practice
11、金融科技(Fintech)
Financial technology,also known as fintech,is an economic industry composed of companies that use technology to make financial services more efficient.This elective gives an insight into the financial technology revolution and the disruption,innovation and opportunity therein.
金融技術(shù),也稱(chēng)為金融科技,是一個(gè)利用技術(shù)使金融服務(wù)更有效率的公司組成的經(jīng)濟(jì)產(chǎn)業(yè)。這門(mén)選修課讓你深入了解金融科技革命帶來(lái)的變革,創(chuàng)新和機(jī)遇。
Intro to and History of Fintech
Fintech–Breaking the Financial Services Value Chain
FinTech Hubs
Technology–Blockchain;Cryptocurrencies;Big Data 102;AI 102
Fintech Solutions
The Future of Fintech
12、C++編程(C++)
Starting with the basics of simple input via keyboard and output to screen,this elective will work through a number of topics,finishing with simple OOP.
從簡(jiǎn)單的鍵盤(pán)輸入和屏幕輸出開(kāi)始學(xué)習(xí)C++的基礎(chǔ)知識(shí),該選修課將會(huì)涉及許多主題,最后將會(huì)以C++面向?qū)ο缶幊痰暮?jiǎn)單示例結(jié)束。
Getting Started with the C++Environment–First Program;Data Types;Simple Debugging
Control Flow and Formatting–Decision Making;File Management;Formatting Output
Functions–Writing User Defined Functions;Headers and Source Files
Intro to OOP–Simple Classes and Objects
Arrays and Strings